Содержание
- Решите систему уравнений методом подстановки: Ответ введите через запятую, без пробелов
- Решите систему уравнения методом сложения:
- Если первое число увеличить в 3 раза, а второе в 4 раза, то их сумма будет равна 47. Найдите эти числа, если удвоенное второе число на 1 больше первого числа. Выберите верные утверждения, если за х принять первое число, а за у – второе число.
- Для системы уравнений справедливо следующее:
- Укажите систему уравнений, графическая модель которой представлена на рисунке
- Укажите решение системы уравнений, графическая иллюстрация которой представлена на рисунке
- Алгоритм решения системы двух уравнений с двумя переменными методом подстановки^
- Теплоход проходит за 3 ч по течению и 2 ч против течения 240 км. Этот же теплоход за 3 ч против течения проходит на 35 км больше, чем за 2 ч по течению. Найдите скорость течения реки. Ответ: скорость течения реки равна _____ км/ч.
- Решите систему уравнений методом сложения: Ответ введите через запятую, без пробелов
- Для того, чтобы решить систему уравнений графическим методом, необходимо построить графики функций
- Укажите соответствие между системой уравнений и ее решением
- Дана система уравнений Верны ли утверждения? А) Равносильной ей является система уравнений В) Решением исходной системы является пара чисел (2; –1,5). Подберите правильный ответ
- Дана система уравнений Введите дополнительный множитель для первого уравнения, чтобы получилась равносильная ей система уравнений:
- Решение системы уравнений методом сложения:
- Масса 4,5 см3 железа и 8 см3 меди равна 101,5 г. Масса 3 см3 железа больше массы 2 см3 меди на 6,8 г. Найдите плотность железа и плотность меди
- Дана система уравнений Введите номер ее графической модели 1) 2) 3) 4)
- Из пунктов А и В, расстояние между которыми равно 280 км, выходят одновременно два автомобиля. Если автомобили будут двигаться навстречу друг другу, то встреча произойдет через 2 ч. Если же они будут двигаться в одном направлении, то автомобиль, вышедший из А, догонит автомобиль, вышедший из В, через 14 ч. Какова скорость каждого автомобиля? Верны ли утверждения? А) Если х км/ч – скорость первого автомобиля, а у км/ч – скорость второго автомобиля, то верно уравнение 2х + 2у = 280. В) Скорость первого автомобиля 70 км/ч, а второго 60 км/ч. Подберите правильный ответ
- Решите систему уравнений: Ответ введите через запятую, без пробелов
- За 4 ч езды на автомашине и 7 ч езды на поезде туристы проехали 640 км. Какова скорость поезда, если она на 5 км/ч больше скорости автомашины? Ответ: скорость поезда равна _____ км/ч.
- Два туриста вышли одновременно из двух городов, расстояние между которыми 38 км, и встретились через 4 ч. С какой скоростью шел каждый турист, если известно, что первый прошел до встречи на 2 км больше второго? Верны ли утверждения? А) Скорость первого туриста 5 км/ч. В) Скорость второго туриста 4 км/ч. Подберите правильный ответ
- Дана система уравнений: Верны ли утверждения? А) Для решения этой системы уравнений методом сложения можно из первого уравнения вычесть второе уравнение В) Для решения этой системы уравнений методом сложения можно первое уравнение умножить на (–1) и оба уравнения сложить Подберите правильный ответ
- Дана система уравнений Введите дополнительный множитель для первого уравнения, чтоб решить систему методом сложения
- За 3 ч по течению и 4 ч против течения теплоход проходит 380 км. За 1 ч по течению и 30 мин против течения теплоход проходит 85 км. Найдите собственную скорость теплохода и скорость течения
- Не выполняя построений, найдите координаты точки пересечения графиков функций 7х + 4у = 23 и 8х – 10у = 19
- Замените буквы А и В так, чтобы получилось верное тождество:
- Замените буквы А и В так, чтобы получилось верное тождество:
- Укажите соответствие между графической моделью системы уравнений и ее решением:
- Основание равнобедренного треугольника на 7 см больше его боковой стороны. Найдите боковую сторону треугольника, если его периметр равен 43 см. Ответ: боковая сторона треугольника равна _____ см
- Не выполняя построений, найдите координаты точки пересечения графиков функций у – 2х = 1 и 6х – у = 7
- Дана система уравнений Верны ли утверждения? А) Равносильной ей является система уравнений В) Решением исходной системы является пара чисел (–3; 0,5). Подберите правильный ответ
- Укажите равносильные системы уравнений:
- Укажите соответствие между графической иллюстрацией решения системы уравнений и типом системы
- Решите методом сложения систему уравнений:
- На двух полках 55 книг. Если переставить со второй полки половину книг на первую, то на первой станет в 4 раза больше книг, чем останется на второй. Сколько книг на каждой полке?
- Моторная лодка путь по течению от одной пристани до другой проходит за 4 ч, а обратный путь за 5 ч. Какова скорость лодки в стоячей воде, если 70 км по течению она проходит за 3,5 ч? Ответ: скорость лодки в стоячей воде _____ км/ч
- Дана система уравнений Введите дополнительный множитель для первого уравнения, чтобы получилась равносильная ей система уравнений:
- Дана система уравнений Введите номер ее графической модели 1) 2) 3) 4)
- Расположите графические иллюстрации решения систем уравнений в порядке возрастания количества решений:
- Дана система уравнений Верны ли утверждения? А) Для того, чтобы решить систему уравнений графическим методом, необходимо построить графики функций у = 2х + 7 и у = 5 – х. В) Решением системы является пара чисел (2; 3). Подберите правильный ответ
- Решите систему уравнений методом подстановки: Ответ введите через запятую, без пробелов
Решите систему уравнений методом подстановки: Ответ введите через запятую, без пробелов
Решите систему уравнения методом сложения:
- система имеет бесконечное множество решений
- (–0,5; 2)
- (–1; 0)
- система не имеет решений
Если первое число увеличить в 3 раза, а второе в 4 раза, то их сумма будет равна 47. Найдите эти числа, если удвоенное второе число на 1 больше первого числа. Выберите верные утверждения, если за х принять первое число, а за у – второе число.
- 2у – х = 1
- 3х + 4у = 47
- числа равны 9 и 5
Для системы уравнений справедливо следующее:
- (0,5; –1,5) – решение системы
- графическая иллюстрация решения представлена на рисунке
- графическая иллюстрация решения представлена на рисунке
- система неопределенна
Укажите систему уравнений, графическая модель которой представлена на рисунке
Укажите решение системы уравнений, графическая иллюстрация которой представлена на рисунке
- (–1; –2)
- (1,5; 6)
- (1,5; 0) и (6; 0)
- (–2; –1)
Алгоритм решения системы двух уравнений с двумя переменными методом подстановки^
- Подставить полученное выражение для х вместо у во второе уравнение системы
- Решить уравнение относительно х
- Подставить найденное значение х в выражение у через х и найти значение у
- Выразить у через х из первого уравнения системы
- Записать ответ в виде пары значений (х; у)
Теплоход проходит за 3 ч по течению и 2 ч против течения 240 км. Этот же теплоход за 3 ч против течения проходит на 35 км больше, чем за 2 ч по течению. Найдите скорость течения реки. Ответ: скорость течения реки равна _____ км/ч.
Решите систему уравнений методом сложения: Ответ введите через запятую, без пробелов
Для того, чтобы решить систему уравнений графическим методом, необходимо построить графики функций
- у = х и у = 3 + х
- у = –х и у = 3 + х
- у = –х и у = 3 – х
- у = –х и у = –3 + х
Укажите соответствие между системой уравнений и ее решением
- (–1,5; –3,5)
- (–20; –2)
- (–23; –3)
Дана система уравнений Верны ли утверждения? А) Равносильной ей является система уравнений В) Решением исходной системы является пара чисел (2; –1,5). Подберите правильный ответ
- А — нет, В — нет
- А — да, В -нет
- А — нет, В — да
- А — да, В — да
Дана система уравнений Введите дополнительный множитель для первого уравнения, чтобы получилась равносильная ей система уравнений:
Решение системы уравнений методом сложения:
- 31х = 124
- у = 4
- 5 · 4 + 3у = 32
- 3(7х – 2у) + 2(5х + 3у) = 3 · 20 + 2 · 32
Масса 4,5 см3 железа и 8 см3 меди равна 101,5 г. Масса 3 см3 железа больше массы 2 см3 меди на 6,8 г. Найдите плотность железа и плотность меди
- 4,6 и 7,1 г/см3
- 6,5 и 7,2 г/см3
- 7,2 и 8,7 г/см3
- 7,8 и 8,3 г/см3
Дана система уравнений Введите номер ее графической модели 1) 2) 3) 4)
Из пунктов А и В, расстояние между которыми равно 280 км, выходят одновременно два автомобиля. Если автомобили будут двигаться навстречу друг другу, то встреча произойдет через 2 ч. Если же они будут двигаться в одном направлении, то автомобиль, вышедший из А, догонит автомобиль, вышедший из В, через 14 ч. Какова скорость каждого автомобиля? Верны ли утверждения? А) Если х км/ч – скорость первого автомобиля, а у км/ч – скорость второго автомобиля, то верно уравнение 2х + 2у = 280. В) Скорость первого автомобиля 70 км/ч, а второго 60 км/ч. Подберите правильный ответ
- А — да, В –нет
- А — нет, В – да
- А — да, В – да
- А — нет, В – нет
Решите систему уравнений: Ответ введите через запятую, без пробелов
За 4 ч езды на автомашине и 7 ч езды на поезде туристы проехали 640 км. Какова скорость поезда, если она на 5 км/ч больше скорости автомашины? Ответ: скорость поезда равна _____ км/ч.
Два туриста вышли одновременно из двух городов, расстояние между которыми 38 км, и встретились через 4 ч. С какой скоростью шел каждый турист, если известно, что первый прошел до встречи на 2 км больше второго? Верны ли утверждения? А) Скорость первого туриста 5 км/ч. В) Скорость второго туриста 4 км/ч. Подберите правильный ответ
- А — да, В -нет
- А — нет, В — да
- А — да, В — да
- А — нет, В — нет
Дана система уравнений: Верны ли утверждения? А) Для решения этой системы уравнений методом сложения можно из первого уравнения вычесть второе уравнение В) Для решения этой системы уравнений методом сложения можно первое уравнение умножить на (–1) и оба уравнения сложить Подберите правильный ответ
- А — да, В -нет
- А — нет, В — да
- А — нет, В — нет
- А — да, В — да
Дана система уравнений Введите дополнительный множитель для первого уравнения, чтоб решить систему методом сложения
За 3 ч по течению и 4 ч против течения теплоход проходит 380 км. За 1 ч по течению и 30 мин против течения теплоход проходит 85 км. Найдите собственную скорость теплохода и скорость течения
- 45 и 3 км/ч
- 55 и 5 км/ч
- 35 и 3 км/ч
- 40 и 4 км/ч
Не выполняя построений, найдите координаты точки пересечения графиков функций 7х + 4у = 23 и 8х – 10у = 19
- (4; 1)
- (0,5; 3)
- (3; 0,5)
- (–4; 1)
Замените буквы А и В так, чтобы получилось верное тождество:
- А = 3, В = 5
- А = 5, В = –3
- А = –5, В = 3
- А = –3, В = 5
Замените буквы А и В так, чтобы получилось верное тождество:
- А = 0,5, В = –3
- А = –, В =
- А = 2, В = –
- А = –2, В = 3
Укажите соответствие между графической моделью системы уравнений и ее решением:
- (–3; 0)
- (0; 2)
- (1; 1)
Основание равнобедренного треугольника на 7 см больше его боковой стороны. Найдите боковую сторону треугольника, если его периметр равен 43 см. Ответ: боковая сторона треугольника равна _____ см
Не выполняя построений, найдите координаты точки пересечения графиков функций у – 2х = 1 и 6х – у = 7
- (0,5; 2)
- (2; 5)
- (–4; 7)
- (1; 3)
Дана система уравнений Верны ли утверждения? А) Равносильной ей является система уравнений В) Решением исходной системы является пара чисел (–3; 0,5). Подберите правильный ответ
- А — да, В — да
- А — нет, В — нет
- А — нет, В — да
- А — да, В -нет
Укажите равносильные системы уравнений:
Укажите соответствие между графической иллюстрацией решения системы уравнений и типом системы
- система неопределенна
- система несовместна
- система имеет единственное решение
Решите методом сложения систему уравнений:
- (0,2; 0,5)
- (2; 0,5)
- (5; –2)
- (–2; 4)
На двух полках 55 книг. Если переставить со второй полки половину книг на первую, то на первой станет в 4 раза больше книг, чем останется на второй. Сколько книг на каждой полке?
- 45 и 10 книг
- 38 и 17 книг
- 30 и 25 книг
- 33 и 22 книги
Моторная лодка путь по течению от одной пристани до другой проходит за 4 ч, а обратный путь за 5 ч. Какова скорость лодки в стоячей воде, если 70 км по течению она проходит за 3,5 ч? Ответ: скорость лодки в стоячей воде _____ км/ч
Дана система уравнений Введите дополнительный множитель для первого уравнения, чтобы получилась равносильная ей система уравнений:
Дана система уравнений Введите номер ее графической модели 1) 2) 3) 4)
Расположите графические иллюстрации решения систем уравнений в порядке возрастания количества решений:
Дана система уравнений Верны ли утверждения? А) Для того, чтобы решить систему уравнений графическим методом, необходимо построить графики функций у = 2х + 7 и у = 5 – х. В) Решением системы является пара чисел (2; 3). Подберите правильный ответ
- А — да, В — да
- А — да, В -нет
- А — нет, В — нет
- А — нет, В — да